Mélange d'images

GIF-4105/7105 Photographie Algorithmique, Hiver 2019 Jean-François Lalonde

Aujourd'hui

 Comment prendre l'objet découpé et l'insérer dans une nouvelle image?

Composition d'images

Dans les nouvelles...

Image originale

Image "améliorée"

http://www.guardian.co.uk/world/2010/sep/16/mubarak-doctored-red-carpet-picture

Dans les nouvelles...

Images originales

Image "améliorée"

Méthode 1: copier-coller

Méthode 1: copier-coller

Méthode 1: copier-coller

objet x masque + arrière-plan x 1-masque = image composée

 $I = \alpha F + (1 - \alpha)B$

Autre exemple

Problèmes?

- Segmentation doit être parfaite!
- Pixel peut capturer plusieurs objets:
 - Chevaucher deux objets
 - Flou
 - Mouvement
 - Transparence

Dégradé (feathering)

• Les pixels proche de la bordure de l'objet proviennent partiellement de l'objet et de l'arrière-plan

Composition avec dégradé

 $I = \alpha F + (1 - \alpha)B$

Approche 1: copier-coller (avec dégradé)

Niveau de dégradé?

Niveau de dégradé?

Taille de la fenêtre

Taille de la fenêtre

Bonne fenêtre

Fenêtre "optimale": douce transition, sans fantômes (ghosting)

Quelle est la taille de fenêtre optimale?

- Pour éviter les coupures
 - fenêtre = taille des caractéristiques les plus larges
- Pour éviter les « fantômes »
 - fenêtre < taille des détails les plus petits
- La « meilleure » fenêtre varie en fonction du contenu fréquentiel!

Pile Laplacienne!

Pile Laplacienne!

Approche 2: mélange par pyramides

Pyramide gauche

mélange

Pyramide droite

Mélange par pyramides

Horreur!

Mélange par pyramides Laplaciennes

- Approche générale:
 - Construire les pyramides Laplaciennes L_A et L_B à partir des images A et B
 - Construire une pyramide Gaussienne G_R à partir du masque R
 - Combiner les pyramides L_A et L_B en une pyramide combinée L_S avec les poids déterminés par G_R:
 - $L_S(I,i,j) = G_R(I,i,j)^*L_A(I,i,j) + (1-G_R(I,i,j))^*L_B(I,i,j)$ (I=niveau de la pyramide, i,j = pixel)
 - Reconstruire l'image finale à partir de la pyramide L_S

Image de destination

Discontinuité visible!

[Perez et al., 2003]

Destination

Résultat

Pour qu'il n'y ait pas de discontinuités: couleur à la frontière ne change pas

gradient = 0!

Préserver le même contenu que la source gradient = source

Exemple

Gradients

Exemple 1D

Exemple 1D

39

En 2D? Pas si facile...

Pas intégrable: somme en boucle ≠ 0 Malheureusement, cela arrive constamment en pratique!

Notation

$$g_x(x, y) = I(x + 1, y) - I(x, y)$$
$$g_y(x, y) = I(x, y + 1) - I(x, y)$$

Solution en 2D

F

$$F^* = \arg\min_{F} \sum_{x} (g_x(x,y) - (F(x+1,y) - F(x,y)))^2 + \sum_{y} (g_y(x,y) - (F(x,y+1) - F(x,y)))^2$$

Résultats

sources

cloning

seamless cloning

sources/destinations

cloning

seamless cloning

Qu'est-ce qu'on perd?

cloning

seamless cloning

sources/destinations

Choisir les gradients

(c) seamless cloning and destination averaged

(d) mixed seamless cloning

Application: "peindre" des gradients

http://graphics.cs.cmu.edu/projects/gradient-paint/